sense and simplicity

LED System Solutions

Iain Black & Jim Neff
Philips Lumileds Manufacturing
14 June, 2012

The Illumination Space...

Medium vs. High Power LEDs

Assumptions:

- Mid-power LEDs lag high-power in lm/W
 - The last 2 years have clearly proven that this is no longer a safe assumption.
 - Assume existence of general equivalence among main players in omnidirectional solutions
- At optimum drive currents, mid-power LEDs lag high-power in lm/\$
 - This continues to be true: drive current limitations in medium power packages means that high power LEDs driven at 2-3W can provide superior emitter lm/\$
 - However, system limitations can significantly limit this advantage
- Mid-power LEDs lag high-power in system lm/\$
 - Too general a statement the relative system value is much less clear and heavily design dependant

System Value

Mid-Power

- Uniformity
 - Sources can be spread around particularly for TLED etc...
- String Voltage
 - Driver compatibility
- Redundancy
 - Relative ease of providing redundancy compensates for lower reliability
- Simplicity of Use
 - Cheap level-2, even COB
- Mitigations
 - Smaller packages/COB
 - Improved reliability

High-Power

- Compact
 - Small footprint for tight spaces
- High Flux
 - Higher Lumen packages easier to realize with power LED
- Reliability
 - Higher reliability
 - Lumen Maintenance
- High Directionality & Punch
- Mitigations
 - String voltage: multi junction solutions
 - Smaller die sizes
 - Improved reliability PHILIPS

Other Applications

- Display (Mid-power)
 - A lost cause for hi-power?
- Flash (High-power)
 - High surface brightness and punch requirements make this a very directional solution, therefore unsuitable for today's mid-power solutions
- Automotive Exterior Lighting (High-power)
 - High surface brightness and punch requirements make these very directional solutions, therefore unsuitable for today's mid-power solutions

Test & Measurement

- Problem: Cost of 100% electro-optical testing has not kept pace with other mfg cost reductions
 - Testing is necessary, but does not add value
 - Electrical test very cheap, but optical adds complexity & cost
- Desired solutions:
 - Better test equipment to enable cheaper testing, especially hot test
 - Better algorithms to avoid 100% test & binning
 - Tighter process control of color, flux, voltage distributions to enable test simplification
 - Simpler methodology for calibration, both individual tester and across fleet
 - Optical test capability on-par with state-of-art electrical testing

Flexible Packaging

- Today, package form/fit is designed around LED chip architecture
 - Asia mfgs: mid-power, lateral die 5-sided emitters → PLCC cups
 - USA mfgs: high-power, surface emitters → die on ceramic, others
- Common (standardized) packages will inevitably serve some die architectures better than others
 - PLCC footprints serve mid-power (Asia) well, disadvantageous to high-power (USA)
 - Array packaging accommodating to either mid- or high-power
- How do we get packaging standards that work for high-power?
 - Need more affordable materials that don't sacrifice reliability or performance
 - Less material leads to lower cost

Nichia 157, 757

Phosphor Solutions

- <u>Problem</u>: Phosphor solutions are a significant portion of packaging cost
 - Phosphor & matrix materials; application technology and process control
 - Mid-power has cheap solution (goopinacup), but not suitable for high-flux, tight binning
- Need: Low-cost phosphor solutions for high-power LEDs
 - Phosphor materials may not dominate phosphor system cost
 - Tight control of thickness & volume (tight binning) are required
- High-power tradeoffs
 - Flux density vs. material volume, CE (direct vs. remote phosphor solutions)
 - Material cost vs. reliability, CE, temperature performance

Conclusion

- In the non-directional battleground for high volume illumination, very low cost mid-power LEDs offer an excellent proposition, in particular where a distributed light source is desired (e.g., TLED)
- In space-constrained applications, high-power LEDs offer form factors which are difficult to meet with mid-power solutions (especially high-lumen packages)
- In the mass A-type bulb space, considerations over system design, including phosphor strategy, heat sink design, and driver create a space which can be addressed by either solution and, thus, is where the lines are most blurred
- Disruptive factors include: regulation (Energy Star specs, etc...), excess display capacity dumped into illumination, use of hybrid white LEDs (white + red), and remote phosphor designs

